Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction
نویسندگان
چکیده مقاله:
In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using any templates, surfactants or stabilizers. The surface morphology of the modified electrodes was studied by scanning electron microscopy, energy dispersive X-ray and X-ray diffraction techniques. Cyclic voltammetry and rotating disk electrode (RDE) voltammetry methods were used for calculation of electrochemical parameters of the ORR. The GCE modified with PdNPs-GO exhibited a higher catalytic activity in comparison with PdNPs-GNs toward ORR. The high electrocatalytic activity of PdNPs-GO/GCE was attributed to oxygen-containing groups that were formed on the GO during functionalization of graphene nanosheets. These groups act as anchoring sites for metal nanoparticles and improve their dispersion on GO nanosheets. Also, mechanism of ORR was intensively investigated and transferred electron numbers in reaction was calculated using RDE data analysis. Finally, stability of the modified electrodes was studied and the results confirmed that the GCE modified with PdNPs-GO has a long-term stability.
منابع مشابه
Few-layered graphene-supported palladium as a highly efficient catalyst in oxygen reduction reaction.
New, active and stable catalysts competitive to Pt catalysts are necessary for fuel cell development. Here, we present few-layered graphene-supported Pd, revealing a performance superior to Pt/C and Pd/C ORR (positive half-wave potential shift E(1/2) by 50 mV, approximately one order of magnitude higher area- and mass-normalized current densities, I(area), I(mass), after 2500 cycles). The catal...
متن کاملElectrodeposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction
Reduced graphene oxide film was synthesized on a glassy carbon electrode by electro reduction of graphene oxide powders in aqueous solution. Then platinum nano particles were deposited on reduced graphene oxide film that was deposited on the glassy carbon electrode via electro reduction of platinum salt. The Physical morphology of the platinum on reduced graphene oxide film was evaluated by sca...
متن کاملelectrodeposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction
reduced graphene oxide film was synthesized on a glassy carbon electrode by electro reduction of graphene oxide powders in aqueous solution. then platinum nano particles were deposited on reduced graphene oxide film that was deposited on the glassy carbon electrode via electro reduction of platinum salt. the physical morphology of the platinum on reduced graphene oxide film was evaluated by sca...
متن کاملGraphene-supported hemin as a highly active biomimetic oxidation catalyst.
Well supported: stable hemin-graphene conjugates formed by immobilization of monomeric hemin on graphene, showed excellent catalytic activity, more than 10 times better than that of the recently developed hemin-hydrogel system and 100 times better than that of unsupported hemin. The catalysts also showed excellent binding affinities and catalytic efficiencies approaching that of natural enzymes.
متن کاملHighly efficient enrichment of radionuclides on graphene oxide-supported polyaniline.
Graphene oxide-supported polyaniline (PANI@GO) composites were synthesized by chemical oxidation and were characterized by SEM, Raman and FT-IR spectroscopy, TGA, potentiometric titrations, and XPS. The characterization indicated that PANI can be grafted onto the surface of GO nanosheets successfully. The sorption of U(VI), Eu(III), Sr(II), and Cs(I) from aqueous solutions as a function of pH a...
متن کاملAu−Pd Nanoparticles Dispersed on Composite Titania/Graphene Oxide-Supports as a Highly Active Oxidation Catalyst
The control over both the dispersion and the particle size distribution of supported precious metal nanoparticles used in heterogeneous catalysts is of paramount importance. Here, we demonstrate the successful formation of highly accessible and well dispersed gold−palladium nanoparticles, stabilized with two-dimensional graphene oxide, that itself is dispersed by intercalated titania particles ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره Issue 3, pp. 218-324
صفحات 242- 255
تاریخ انتشار 2018-07-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023